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Objective:The objective of this study is to evaluate and compare the effectiveness of treatments with two different electrical
stimulation (e-stim) devices—pulsed direct current (DC) (Neubie) and alternating current (AC) (transcutaneous electrical
stimulation (TENS))—in the treatment of symptoms for patients with diabetic peripheral neuropathy (DPN).
Design:Randomized controlled trial (RCT) with parallel groups.

Methods: One hundred fifty participants were recruited from 13 Hands-On Diagnostics-affiliated sites across several US
locations. Participants were randomly divided into two groups for comparison—Neubie and TENS. Participants received a 30-
min foot stimulation protocol with either TENS unit electrodes or Neubie electrodes. Outcome measures included the Toronto
Clinical Neuropathy Score (TCNS), two-point discrimination, visual analogue scale (VAS), vibration sense (VBS), nerve
conduction velocity (NCV), and nerve amplitude. The effect of the two variables on all outcome measures was determined
using an analysis of covariance (ANCOVA).

Results: The Neubie group demonstrated statistically significant improvements in TCNS for both right and left sides (p < 0.001),
two-point discrimination of the dominant foot (p =0.001), VBS (p =0.022) and VAS scores (p=0.009), and some but not all
nerves tested by NCV (p < 0.05).

Conclusion: Overall, DPN treatment with the Neubie resulted in significant improvements in several major outcome measures,
whereas TENS showed no significant difference in any outcome measure. These findings support the use of DC devices as a
potentially superior therapeutic treatment for neuropathy over AC devices like the TENS unit.

Trial Registration: ClinicalTrials.gov identifier: NCT05442021
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1. Introduction

Diabetic peripheral neuropathy (DPN) is a common compli-
cation in both Type 1 and 2 diabetes, affecting approximately
40%-70% of people with diabetes [1-6]. DPN results in pain,
numbness, and paresthesia, most commonly in the feet and

hands [7-10]. Both large and small nerve fibers are impacted
by DPN, altering pain, proprioception, touch perception, and
motor function, which can cause burning foot or hand pain
and serve as protective mechanisms from ulcerations [11].
Traditionally, treatment for DPN has focused mainly on drug
therapies, which are associated with multiple side effects,
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including lethargy, somnolence, and increased risk of falls
[12-17]. One alternative treatment for DPN that has
shown promise is the use of electrical stimulation (e-stim),
as it is a noninvasive therapeutic modality that has few side
effects and contraindications and no known drug interac-
tions [18-23].

The literature on the use of e-stim for treating neuropa-
thy symptoms demonstrates the capability of the modality to
alter nerve injury or neuropathy: in diabetes, nerve damage
has been associated with microvascular disease to the nerve,
and cutaneous circulation significantly increases with the
application of e-stim, as well as vascular endothelial growth
factor (a primary angiogenic factor) [24-27]. This increase
suggests that e-stim may increase angiogenesis [26, 28-32],
which in turn may improve microcirculation associated with
neuropathy, leading to reduced symptoms and improved
nerve function [24, 25, 28, 29, 33, 34]. The application of
e-stim stimulates cutaneous afferent fibers, which may con-
tribute to the reported analgesic effect [35-46]. Additionally,
preclinical studies suggest that e-stim inhibits nociception at
the presynaptic level in the dorsal horn, effectively reducing
pain by limiting the transmission of pain signals [43].

A limited number of clinical studies have investigated
the use of e-stim for DPN symptoms. Many have used trans-
cutaneous electrical stimulation (TENS), which employs
lower frequencies and alternating currents (ACs), and have
seen some effectiveness for pain associated with neuropathy
but have limited impact on other symptoms [42, 43, 47-55].
In contrast, clinical studies have found that direct current
(DC) neuromuscular e-stim at higher frequencies is signifi-
cantly more effective than TENS at ameliorating symptoms
like motor function and numbness [56-58]. In addition,
the process of activating denervated muscles necessitates a
longer duration of electrical pulses, which can be achieved
using DC but not AC [59].

Historically, DC has been less useful in the clinical set-
ting, as the continuous unidirectional flow of ions leads to
a buildup of charge that can cause skin irritation and burns.
Thus, despite the evidence supporting the effectiveness of
DC over AC, most clinical applications of e-stim remain
AC. Recent advances in DC technology have addressed this
issue, allowing for the safe use of DC in clinical applications.
One such device is the Neubie, offered by Neurological Fit-
ness Equipment and Education LLC (NeuFit). Most com-
mercially available DC devices address the issues of charge
buildup by using very short pulse widths (5-200 ms) at high
voltage. However, a longer pulse width has been found to be
more effective for clinical application. To this point, the
Neubie counters and eliminates the issue of irritation and
pulse width with an additional carrier waveform that dissi-
pates charge buildup, allowing for the safe use of a longer
pulse width (460 ms).

Therefore, in the case of DPN, a device like the Neubie
would be uniquely suited to targeting common symptoms
[60, 61].

1.1. Hypothesis and Statement of Purpose. We hypothesized
that treatment with the Neubie device would result in greater
improvement in both subjective and objective symptoms
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related to DPN than treatment with TENS would. The
results of this study could impact future recovery protocols
not just for DPN but for any condition that results in nerve
damage, muscle weakness, and chronic pain.

2. Methods

2.1. Selection and Description of Participants. Participants
were recruited from 13 physical therapy (PT) clinics trained
in EMG testing. Upon enrollment in the study, participants
were assigned a number with a randomization calculator
and assigned to either the experimental or control group
based on the block randomization method to build two
groups of equal size.

Participants were enrolled based on the following inclu-
sion criteria:

1. Must have a minimum score of 1 (mild polyneuropa-
thy) on the modified Toronto Clinical Neuropathy
Score (TCNYS).

2. Must be able to attend weekly sessions for the 6 weeks
of the study.

3. Must be at least 18 years old.

Participants were excluded if they:

1. were pregnant at the time of the study.
. had a cardiac pacemaker.

. had active or recent cancer in the lower limbs.

2
3
4. had active or recent blood clots in the lower limbs.
5. had a history of epilepsy.

6

. had open wounds.

2.2. Recruited Sample. One hundred fifty participants ful-
filled the inclusion criteria requirements and were enlisted
for the final study. All the recruited participants were above
18 years, with a group mean age of 74 years. Regarding gen-
der, 52% were male and 48% were female, thus satisfying the
desire for a gender-balanced sample. Participants obtained
informed consent, and their rights were protected. Each par-
ticipant was informed that data about him or her would be
submitted for publication. An institutional board review
was completed by Advarra.

2.3. Treatment Protocol. Participants underwent a special-
ized neuropathy protocol that included traditional PT for
neuropathy and foot stimulation treatment with the Neubie
or TENS unit. Subjects participated in 12 sessions of PT over
6 weeks (two per week). The sessions included a 30-min foot
stimulation session with either the Neubie or TENS unit and
15 min of various standard-of-care PT exercises determined
by each physical therapist. Treatments were open-label, and
participants were aware of which stimulation type they
received. Order of outcome measures was maintained across
all sites. The treating clinician was maintained for each par-
ticipant throughout the duration of the study.
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e TENS group: Sessions included a 30-min TENS (50-
100 Hz, pulse width of 50-200 us) application and 15
min of various PT.

e Neubie group: Neurostimulation pads were linked to
electrodes designated as red or black for paired place-
ment on the skin. Red denoted positive, black denoted
negative, and the direction of current flow was from
the red to the black pad.

The pad placement process was standardized for unifor-
mity. Rectangular electrodes were attached to the red leads
at the tibialis anterior, and the black leads were attached to
4" carbon fiber electrodes and placed into a container of
water. Participants’ feet were placed into the water, using
the water as a conductor for stimulation of the full foot
and the rectangular pads to stimulate the calf (Figure 1).

e-stim frequencies used with the Neubie (460 Hz pulse
width) were standardized at 500 pulses per second, as per
NeuFit’s protocols. Regarding stimulation intensity, partici-
pants were asked to undergo e-stim with the Neubie at
their “treatment threshold.” The treatment threshold was
described as “uncomfortable” but not “painful” (a 5-7 out
of 10 on a perceived intensity scale). Participants were
asked to mobilize their feet and ankles via joint movements
in the water while being stimulated.

2.4. Data Collection Methods. Prior to the first session (base-
line) and after the final treatment session (outcome), subjects
received an evaluation that included an electrodiagnostic
EMG/nerve conduction velocity (NCV) study, the TCNS
assessment, pain assessment, and sensory assessment.

2.5. Outcome Measures. The baseline and outcome measures
included TCNS for the right and left sides, two-point dis-
crimination of the dominant foot (how far apart the patient
can sense two pinpoints), VBS (vibration sense) time (how
long VBS can be felt from a 128 Hz tuning fork), VAS (visual
analogue scale) pain severity scores, as well as various mea-
surements related to nerve conduction, including distal
latency (DL), NCV, and amplitude (Ampl) for dominant tib-
ial motor, dominant fibular motor, dominant ulnar motor,
dominant sural, dominant superficial fibular sensory, and
dominant ulnar sensory nerves.

3. Statistical Methods

All statistical analyses were conducted using IBM SPSS Sta-
tistics Version 27.0.1. Descriptive and inferential analyses
were performed to evaluate the effectiveness of the Neubie
and TENS treatments for DPN.

3.1. Descriptive Statistics. Sociodemographic characteristics
and baseline clinical parameters were summarized using
descriptive statistics. For categorical variables, frequencies
and percentages were calculated, while continuous variables
were summarized using means and standard deviations
(SDs). The normality of the data was assessed using Q-Q
plots, confirming the suitability of parametric tests.

@D Rubber electrodes
floating in water

@B Sticky electrodes

E Water bath

FiGUre 1: Electrical stimulation water submersion setup. Red
(positive) electrodes are placed on the tibialis anterior, and black
(negative) carbon fiber electrodes are placed in the water bath.

3.2. Comparisons of Baseline Characteristics. To ensure com-
parability between the two groups, baseline characteristics
were analyzed using independent samples ¢-tests for contin-
uous variables (e.g., age and clinical parameters) and Fisher’s
exact test for categorical variables (e.g., gender distribution).
These analyses confirmed no statistically significant differ-
ences between the groups before the intervention.

3.3. Adjusted Analyses. Postintervention clinical and nerve
conduction parameters were analyzed using analysis of
covariance (ANCOVA) to adjust for potential confounders,
including age, gender, and baseline values of the respective
outcome measures. This approach isolated the treatment
effects by controlling for these covariates. Results from
ANCOVA are reported as estimated marginal means
(EMMs) with associated standard errors (SEs) and p values.
Adjusted findings were considered statistically significant at
p <0.05.

3.4. Correction for Multiple Comparisons. To control for the
increased risk of Type I error due to the analysis of multiple
outcome measures, a Bonferroni correction was applied to
the primary outcomes, including TCNS, two-point discrim-
ination, VBS, VAS, and nerve conduction parameters (DL,
NCV, and Ampl). This adjustment divided the alpha level
(0.05) by the number of comparisons, yielding a more strin-
gent threshold for significance. Postcorrection, only domi-
nant ulnar motor NCV (p <0.001) and dominant sural
Ampl (p=0.005) remained statistically significant.
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3.5. Reporting of Results. Results are presented in three tiers:

1. Unadjusted comparisons between groups to provide
an initial assessment.

2. Adjusted comparisons using ANCOVA to account for
confounders.

3. Multiple comparisons-corrected results to ensure
robust statistical interpretation.

3.6. Significance Thresholds. A two-tailed p value <0.05 was
considered statistically significant for all unadjusted and
adjusted analyses. For Bonferroni-corrected analyses, the
significance threshold was determined by dividing 0.05 by
the number of comparisons, yielding a stricter criterion for
statistical significance.

3.7. Sample Size Calculation and Power Analysis. Sample size
calculation was performed using G#Power software to
ensure adequate statistical power to detect meaningful dif-
ferences between the groups. The calculation targeted a
moderate effect size (Cohen’s d =0.5) for the primary out-
come measure (e.g., TCNS) with 80% power and an alpha
level of 0.05. This analysis indicated a minimum requirement
of 64 participants per group to achieve statistical significance.
To account for potential dropouts, the recruitment target was
increased to 75 participants per group, resulting in a total
sample size of 150.

4. Results

4.1. Sociodemographic Characteristics. A total of 150 partici-
pants were enrolled in the study, with 75 participants in the
Neubie group and 75 in the TENS group. Table 1 presents
the sociodemographic characteristics of the participants.
The two groups were balanced with respect to gender distri-
bution (p = 0.253) and age (p = 0.058). Although the Neubie
group was slightly older on average (75.3 +5.7 vs. 72.8 £ 9.6
years for the TENS group), this difference was not statisti-
cally significant and was adjusted for in subsequent analyses.

4.2. Baseline Clinical and Nerve Conduction Parameters. The
two groups’ baseline characteristics for clinical and nerve
conduction parameters were similar (Table 2). No signifi-
cant differences were found in TCNS, two-point discrimina-
tion, VBS, VAS, or nerve conduction parameters such as
DL, NCV, and Ampl. This similarity ensures comparability
between groups before the intervention.

4.3. Unadjusted Postintervention Results. The unadjusted

postintervention results showed that the Neubie group dem-

onstrated statistically significant improvements in several

outcome measures compared to the TENS group (Table 3).
Key findings include:

a. Significant reductions in TCNS scores for both the
right and left sides (p < 0.001).

b. Significant improvement in two-point discrimination
of the dominant foot (p =0.001).
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c. Enhanced VBS (p =0.022).
d. Reduced pain as measured by VAS (p =0.009).

e. Improvements in NCV and Ampl for several nerves,
including the dominant tibial motor, fibular motor,
sural, and superior fibular sensory nerves.

4.4. Adjusted Postintervention Results. To control for poten-
tial confounders, postintervention results were adjusted for
baseline values, age, and gender using ANCOVA (Table 4).
After adjustment, the Neubie group maintained significant
improvements in TCNS for both the right and left sides
(p <0.001), two-point discrimination of the dominant foot
(p=0.001), and VBS (p =0.022).

Significant differences were observed in NCV for the
dominant fibular motor (p =0.006), dominant ulnar motor
(p <0.001), dominant sural (p =0.013), and dominant supe-
rior fibular sensory (p =0.001) nerves.

Ampl improvements were significant for the dominant
tibial motor (p = 0.019), dominant fibular motor (p = 0.020),
dominant sural (p <0.001), and dominant superior fibular
sensory (p = 0.006) nerves.

4.5. Correction for Multiple Comparisons. To reduce the risk
of Type I error, Bonferroni’s correction was applied to the
primary outcome measures. After correction, significant
improvements remained for TCNS (right and left sides, p <
0.001), two-point discrimination (p = 0.001), VBS (p = 0.022),
dominant ulnar motor NCV (p < 0.001), and dominant sural
Ampl (p=0.005).

Other observed improvements, such as VAS and certain
nerve conduction parameters, did not meet the adjusted
threshold for significance.

5. Discussion

The current study compared the therapeutic effects of Neu-
bie and TENS treatments for patients with DPN. The Neubie
group demonstrated statistically significant improvements in
key clinical outcomes compared to the TENS group. This
was particularly evident in TCNS scores for both right and
left sides, two-point discrimination of the dominant foot,
and VBS and VAS scores, indicating superior clinical out-
comes related to neuropathy scores, enhanced sensory func-
tion, and reduced pain levels with Neubie treatment.

Nerve conduction studies further bolstered the findings
favoring the Neubie treatment. Significant improvements
were observed in nerve conduction parameters, especially
in NCV and Ampl for several nerve types, suggesting that
Neubie potentially optimizes nerve function in patients with
DPN. Nevertheless, not all nerve conduction parameters
yielded significant results, underscoring the necessity for
additional exploration into facets of nerve function. Specifi-
cally, there were similar outcomes in the ulnar, fibular, and
tibial nerves (showing improvements in the Neubie group
for DL and NCV, but not in Ampl). This suggests a more
specific effect of the Neubie that encourages increased speed
of signaling, but not the Ampl.
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TaBLE 1: Comparison of sociodemographic characteristics of participants in the control and experimental group.
Group
Control group Experimental group Total
N % M sSD N % M SD N % M sp Pvale
Gender
Female 40 53.3% 32 42.7% 72 48.0%
Male 35 46.7% 43 57.3% 78 52.0% 0.253*
Total 75 100% 75 100% 150 100%
Age 728 96 75.3 5.7 74.1 8.0 0.058"
“Fisher’s exact test.
“Independent samples ¢-test.
TaBLE 2: Comparison of baseline clinical/nerve conduction parameters of participants in the experimental and control group.
Group
?V(I)ntrol grosqu E);I/;erlmental grsoll)lp p value® . Total o
TCNS right pre 11.4 3.1 11.6 2.7 0.560 11.5 2.9
TCNS left pre 11.3 3.0 11.5 2.8 0.716 11.4 2.9
Two-point discrimination dominant foot pre (mm) 337 7.6 32.8 6.9 0.481 333 7.3
VBS (vibration sense) time pre 2.7 1.6 2.7 1.1 1.000 2.7 14
VAS (visual analogue scale) pre 5.1 1.8 5.1 1.1 1.000 5.1 1.5
Dominant tibial motor
DL pre (msec) 4.5 0.8 43 0.8 0.142 44 0.8
NCV pre (m/sec) 38.7 4.9 38.2 5.1 0.581 38.5 5.0
Ampl pre 4.4 2.7 43 3.1 0.951 44 2.9
Dominant fibular motor
DL pre (msec) 4.9 1.0 4.9 1.0 0.724 4.9 1.0
NCV pre (m/sec) 394 4.8 38.7 53 0.403 39.1 5.1
Ampl pre 1.8 1.3 2.0 1.4 0.600 1.9 1.3
Dominant ulnar motor
DL pre (msec) 3.1 0.6 3.1 0.5 0.701 3.1 0.6
NCV pre (m/sec) 51.1 8.6 51.0 7.8 0.953 51.0 8.2
Ampl pre 7.3 1.8 7.6 2.0 0.273 7.5 1.9
Dominant sural
DL pre (msec) 2.8 2.0 3.0 2.1 0.468 2.9 2.1
NCV pre (m/sec) 25.6 19.0 24.3 17.4 0.670 25.0 18.2
Ampl pre 2.0 1.9 2.1 2.0 0.790 2.1 1.9
Dominant sup fibular sensory
DL pre (msec) 4.1 3.2 4.7 33 0.260 44 33
NCV pre (m/sec) 18.6 15.5 16.9 12.9 0.474 17.8 14.3
Ampl pre 1.4 1.5 1.5 1.5 0.806 1.5 1.5
Dominant ulnar sensory
DL pre (msec) 2.9 1.7 3.1 1.6 0.477 3.0 1.6
NCV pre (m/sec) 31.0 17.6 33.1 16.4 0.443 32.1 17.0
Ampl pre 7.8 5.6 8.4 5.3 0.466 8.1 5.5

“Independent samples ¢-test.

Further studies should investigate if this effect is consis-
tent with other nerves or if the application of the e-stim is
given in a different protocol. One explanation for these

results could be the placement of the red electrode on the
tibialis anterior. Previous studies using the Neubie have
shown that the stimulation of the current from the Neubie
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TaBLE 3: Comparison of postintervention clinical/nerve conduction parameters of experimental and control group (not adjusted for

confounders).
Group
SIV(I)ntrol grosu]I)) E);}/;erlmental grsolgp p value* . Total -

TCNS right pre 10.9 34 10.1 2.7 0.118 10.5 3.1
TCSN left pre 10.6 3.2 10.0 2.6 0.245 10.3 2.9
Two-point discrimination dominant foot pre (mm) 33.0 7.6 31.0 7.1 0.105 32.0 7.4
VBS (vibration sense) time pre 2.9 1.6 33 14 0.149 3.1 1.5
VAS (visual analogue scale) pre 4.2 2.1 3.8 1.1 0.138 4.0 1.6
Dominant tibial motor

DL post (msec) 4.4 0.9 43 0.8 0.262 43 .8

NCV post (m/sec) 39.0 5.0 40.6 7.5 0.139 39.8 6.4

Ampl post 44 2.7 4.7 3.0 0.478 4.6 2.9
Dominant fibular motor

DL post (msec) 4.8 0.9 4.7 0.9 0.451 4.8 0.9

NCV post (m/sec) 40.1 52 41.6 5.0 0.087 40.9 5.1

Ampl post 1.9 1.2 2.3 1.4 0.140 2.1 1.3
Dominant ulnar motor

DL post (msec) 3.1 0.5 3.1 0.5 1.000 3.1 0.5

NCV post (m/sec) 51.7 8.0 54.2 7.5 0.048* 52.9 7.8

Ampl post 7.2 1.6 7.7 1.9 0.100 7.5 1.8
Dominant sural

DL post (msec) 2.7 2.0 2.7 1.9 0.973 2.7 1.9

NCV post (m/sec) 26.2 19.2 26.7 18.3 0.886 26.4 18.7

Ampl post 2.1 1.9 3.1 24 0.005* 2.6 2.2
Dominant sup fibular sensory

DL post (msec) 4.1 3.1 43 3.0 0.680 4.2 3.1

NCV post (m/sec) 18.8 15.7 18.8 14.3 0.994 18.8 14.9

Ampl post 1.5 1.5 1.7 1.6 0.351 1.6 1.6
Dominant ulnar sensory

DL post (msec) 2.9 1.8 3.0 1.6 0.907 2.9 1.7

NCV post (m/sec) 30.1 17.6 35.3 17.6 0.072 32.7 17.7

Ampl post 8.3 8.1 9.7 6.0 0.238 9.0 7.1

*Independent samples t-test.

is directly related to pad placement. The pads’ placement
will encourage more specific muscle activation in those
regions [62]. The placement used in this study would more
specifically activate the nerve fibers running through that
leg region.

A possible explanation for the improved outcomes in the
Neubie group over the TENS group is the differences in fre-
quency and wavelength between the two e-stim types. Since
it is DC, the Neubie operates with different frequency and
wavelength ranges than conventional TENS units. Previous
clinical studies have found that DC neuromuscular e-stim
at higher frequencies is significantly more effective than
TENS at ameliorating symptoms like motor function and
numbness [56-58]. The results of the current study support
these previous findings, showing a more effective treatment
outcome with DC for ameliorating DPN symptoms. The
changes to nerve function suggest that the longer pulse dura-

tions employed by the Neubie are sufficient to activate
denervated muscles and support new nerve activity [59].

Further, it is postulated that varying frequencies and
wavelengths can have distinct effects on nerve activation,
repair, and overall function. The Neubie might modulate
nerve activity to promote faster repair or better nerve
function.

It is interesting to note that in this study, we only applied
current in one direction. It would be useful to investigate
alternating the polarity of the current to determine if that
plays a role in the impact the current has on specific nerve
signaling outcomes.

Compelling research done in spinal cord injury has
shown that nerve regeneration enhanced by DC e-stim tends
to grow towards one electrode, or rather with the direction
that it is stimulated. This may contribute to a possible expla-
nation as to why the improvements we see in the nerves are
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TaBLE 4: Comparison of postintervention clinical/nerve conduction parameters of experimental and control group participants (adjusted for

age, gender, and respective baseline parameter).

Group
EE(IIV([)ntrol groups . E]éﬁerlmental grmslg p value*

TCNS right post 11.06 0.14 9.99 0.14 <0.001"
TCSN left post 10.71 0.14 9.91 0.14 <0.001%
Two-point discrimination dominant foot post (mm) 32.54 0.24 31.38 0.25 0.001*
VBS (vibration sense) time post 2.909 0.11 3.28 0.11 0.022*
VAS (visual analogue scale) post 4.21 0.13 3.70 0.13 0.009*
Dominant tibial motor

DL post (msec) 4.38 0.08 4.29 0.08 0.461

NCV post (m/sec) 38.97 0.74 40.78 0.75 0.088

Ampl post 4.34 0.15 4.84 0.148 0.019*
Dominant fibular motor

DL post (msec) 4.81 0.08 4.72 0.08 0.397

NCV post (m/sec) 39.83 0.48 41.77 0.484 0.006*

Ampl post 1.99 0.06 2.20 0.064 0.020"
Dominant ulnar motor

DL post (msec) 3.08 0.04 3.10 0.04 0.771

NCV post (m/sec) 51.60 0.49 54.41 0.496 <0.001*

Ampl post 7.342 0.11 7.58 0.11 0.112
Dominant sural

DL post (msec) 2.81 0.05 2.61 0.05 0.003*

NCV post (m/sec) 25.58 0.50 27.40 0.51 0.013*

Ampl post 2.13 0.15 3.14 0.148 <0.001*
Dominant sup fibular sensory

DL post (msec) 4.34 0.08 3.97 0.08 <0.001*

NCV post (m/sec) 17.90 0.39 19.70 0.39 0.001*

Ampl post 1.53 0.04 1.69 0.04 0.006*
Dominant ulnar sensory

DL post (msec) 3.02 0.08 2.88 0.08 0.245

NCV post (m/sec) 30.94 0.75 34.36 0.76 0.002*

Ampl post 8.58 0.68 9.39 0.68 0.405

*Analysis of covariance (ANCOVA) (fixed effects: experimental/control group and gender; covariates: age and respective preintervention parameter).

not consistent across all nerves stimulated [59]. Future
research could include a protocol with alternating polarity
to determine the overall impact on improved nerve outcomes.

6. Conclusion

The primary objective of this research was to discern any
distinguishable therapeutic advantages of the Neubie as
opposed to the conventional TENS unit for patients with
DPN. Through comprehensive statistical analyses and sub-
sequent evaluation, Neubie has demonstrated superior out-
comes in several vital clinical and nerve conduction metrics.
This supports our hypothesis that treatment with the Neu-
bie device results in an improvement in both subjective and
objective symptoms related to DPN.

6.1. Study Limitations. While the above points offer plausible
reasons for the observed superior outcomes with Neubie, it
is vital to note that not all nerve conduction parameters
demonstrated significant results. Additionally, long-term
outcomes and the sustainability of improvements need fur-
ther exploration. Although the objective measurements of
nerve function were significantly improved at the end of
treatment, it is unknown how long these improvements
would be seen after cessation of treatment. Follow-up mea-
surements within the weeks to months following would
greatly improve our understanding of the ability of electro-
therapy to create a lasting change in nerve function.

When examining subjective outcome measures like
reported pain or sensory inputs, the potential placebo effect
or the heightened expectation of results with newer
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technologies must be considered. Future studies might
incorporate a double-blinded design to more effectively con-
trol these effects.

In summary, Neubie has shown promising results over
TENS in this study for the treatment of DPN, but a holistic
understanding of its efficacy would require more extensive
studies, long-term follow-ups, and further exploration of
mechanistic insights into its therapeutic advantages.

7. Key Points

7.1. Findings. DPN treatment with the Neubie resulted in
significant patient improvements compared to TENS.

7.2. Implication. Future recovery protocols for DPN and
conditions that result in nerve damage, muscle weakness,
and chronic pain should consider recommending the Neubie
device.
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